- Associate Professor, Biochemistry and Biophysics, College of Agriculture and Life Sciences
A fundamental principle of biology is the use of chemical energy in the form of ATP to assemble, disassemble and alter macromolecular structure. Specialized control proteins known as molecular chaperones are often responsible for this activity and have been recognized in recent years to be essential for regulating many aspects of cellular biology. Using a variety of biophysical and biochemical techniques, the Rye lab focuses on three fundamental cellular processes that require molecular chaperones: (1) protein folding (2) protein disaggregation and (3) vesicle trafficking. In each of these cases, large quantities ATP are burned, resulting in molecular organization in the case of protein folding, and molecular disassembly and remodeling in the case of protein disaggregation and vesicle trafficking. We are interested in understanding the detailed biophysical mechanisms that underpin these events. Why are these processes so energetically expensive? Are there any similarities in how the energy is used between these very different molecular processes? Are there general principles of energy transduction in biology that can be gleaned by comparing these examples with other molecular machines, such as cytoskeletal motors? Understanding how molecular chaperones control protein and membrane organization will provide key insights into not only basic cell biology, but will also illuminate aspects of many diseases that spring from aberrant protein and membrane dynamics.
- Ph.D. in Molecular and Cell Biology, University of California, Berkeley - (Berkeley, California, United States) 1995
- B.A. in Biochemistry, Rice University - (Houston, Texas, United States) 1989
Academic Articles34
- Shoup, D., Roth, A., Thapa, R., Puchalla, J., & Rye, H. S. (2021). Development and application of multicolor burst analysis spectroscopy. 120(11), 2192-2204.
- Brock, D. J., Kustigian, L., Jiang, M., Graham, K., Wang, T., Erazo-Oliveras, A., ... Pellois, J. (2018). Efficient cell delivery mediated by lipid-specific endosomal escape of supercharged branched peptides.. Traffic. 19(6), 421-435.
- Weaver, J., Jiang, M., Roth, A., Puchalla, J., Zhang, J., & Rye, H. S. (2017). GroEL actively stimulates folding of the endogenous substrate protein PepQ.. Nat Commun. 8(1), 15934.
- Brooks, A., Shoup, D., Kustigian, L., Puchalla, J., Carr, C. M., & Rye, H. S. (2015). Single particle fluorescence burst analysis of epsin induced membrane fission.. PLoS One. 10(3), e0119563-e0119563.
- Weaver, J., & Rye, H. S. (2014). The C-terminal Tails of the Bacterial Chaperonin GroEL Stimulate Protein Folding by Directly Altering the Conformation of a Substrate Protein*. 289(33), 23219-23232.
Books1
- Sigler, P. B., Xu, Z., Rye, H. S., Burston, S. G., Fenton, W. A., & Horwich, A. L. (1998). STRUCTURE AND FUNCTION IN GroEL-MEDIATED PROTEIN FOLDING. Annual Reviews.
Conference Papers1
- Weaver, J. S., & Rye, H. S. (2013). The Persistent Effect of Initial Substrate Protein Conformation on Productive Folding by Groel-Groes. 104(2), 572a-572A.
Principal Investigator3
- BICH491 Hnr-research Instructor
- BICH491 Research Instructor
- BICH603 Prin Biochemistry & Biophysics Instructor
- BICH624 Enz Prot & Nuc Acids Instructor
- BICH674 Prot Folding & Stability Instructor
- Shoup, Daniel Wayne (2016-05). The Impact Of Hidden Aggregate Structure On Molecular Chaperone Disaggregation Revealed By Single Particle Fluorescence Burst Analysis. (Doctoral Dissertation)
- Brooks, Arielle L (2015-05). Single Particle Fluorescence Burst Analysis of Membrane Fission. (Master's Thesis)
- Weaver, Jeremy Scott (2015-05). Enhancement of Chaperone-Mediated Protein Folding Through Substrate Protein Interactions with the Groel C-Termini. (Doctoral Dissertation)