A topography‐based scaling algorithm for soil hydraulic parameters at hillslope scales: Field testing | Academic Article individual record
abstract

Soil hydraulic parameters were upscaled from a 30 m resolution to a 1 km resolution using a new aggregation scheme (described in the companion paper) where the scale parameter was based on the topography. When soil hydraulic parameter aggregation or upscaling schemes ignore the effect of topography, their application becomes limited at hillslope scales and beyond, where topography plays a dominant role in soil deposition and formation. Hence the new upscaling algorithm was tested at the hillslope scale (1 km) across two locations: (1) the Little Washita watershed in Oklahoma, and (2) the Walnut Creek watershed in Iowa. The watersheds were divided into pixels of 1 km resolution and the effective soil hydraulic parameters obtained for each pixel. Each pixel/domain was then simulated using the physically based HYDRUS-3-D modeling platform. In order to account for the surface (runoff/on) and subsurface fluxes between pixels, an algorithm to route infiltration-excess runoff onto downstream pixels at daily time steps and to update the soil moisture states of the downstream pixels was applied. Simulated soil moisture states were compared across scales, and the coarse scale values compared against the airborne soil moisture data products obtained during the hydrology experiment field campaign periods (SGP97 and SMEX02) for selected pixels with different topographic complexities, soil distributions, and land cover. Results from these comparisons show good correlations between simulated and observed soil moisture states across time, topographic variations, location, elevation, and land cover. Stream discharge comparisons made at two gauging stations in the Little Washita watershed also provide reasonably good results as to the suitability of the upscaling algorithm used. Based only on the topography of the domain, the new upscaling algorithm was able to provide coarse resolution values for soil hydraulic parameters which effectively captured the variations in soil moisture across the watershed domains. Copyright 2012 by the American Geophysical Union.

author list (cited authors)
Jana, R. B., & Mohanty, B. P.
publication date
2012
published in
citation count

21