Strouboulis, Theofanis individual record
Professor
selected publications
Academic Articles56
  • Wang, D. L., Strouboulis, T., & Babuska, I. (2022). Guaranteed a-posteriori error estimation for semi-discrete solutions of parabolic problems based on elliptic reconstruction. Computer Methods in Applied Mechanics and Engineering. 402, 115442-115442.
    doi badge online source badge
  • Strouboulis, T., Wang, D., & Babuska, I. (2012). Superconvergence of elliptic reconstructions of finite element solutions of parabolic problems in domains with piecewise smooth boundaries. Computer Methods in Applied Mechanics and Engineering. 241, 128-141.
    doi badge online source badge
  • Strouboulis, T., Wang, D. L., & Babuska, I. (2009). Robustness of error estimators for finite element solutions of problems with high orthotropy. Computer Methods in Applied Mechanics and Engineering. 198(21-26), 1946-1966.
    doi badge online source badge
  • Strouboulis, T., Hidajat, R., & Babuska, I. (2008). The generalized finite element method for Helmholtz equation. Part II: Effect of choice of handbook functions, error due to absorbing boundary conditions and its assessment. Computer Methods in Applied Mechanics and Engineering. 197(5), 364-380.
    doi badge online source badge
  • Strouboulis, T., Zhang, L., & Babuska, I. (2007). Assessment of the cost and accuracy of the generalized FEM. International Journal for Numerical Methods in Engineering. 69(2), 250-283.
    doi badge online source badge
Books3
  • Babuska, I., Whiteman, J., & Strouboulis, T. (2010). Finite Elements An Introduction to the Method and Error Estimation. OUP Oxford.
  • Ladevèze, P., & Pelle, J. P (2006). Mastering Calculations in Linear and Nonlinear Mechanics. Springer Science & Business Media.
    doi badge online source badge
  • Babuka, I., & Strouboulis, T. (2001). The Finite Element Method and Its Reliability. Oxford University Press.
    online source badge
Chapters3
  • Babuska, I., Strouboulis, T., Gangaraj, S. K., Copps, K., & Datta, D. K. (1998). A-posteriori estimation of the error in the error estimate. Studies in Applied Mechanics. Advances in Adaptive Computational Methods in Mechanics. 155-197. Elsevier.
    doi badge online source badge
  • ODEN, J. T., STROUBOULIS, T., & DEVLOO, P. H. (1986). Variational Principles and Adaptive Methods for Complex Flow Problems. SASAKI, Y. K. (Eds.), Variational Methods in Geosciences. 189-200. Elsevier.
    doi badge online source badge
  • Demkowicz, L., Oden, J. T., & Strouboulis, T. (1985). ADAPTIVE P-VERSION FINITE ELEMENT METHOD FOR TRANSIENT FLOW PROBLEMS WITH MOVING BOUNDARIES.. 291-305.
Conference Papers12
  • Strouboulis, T., Zhang, L., & Babuska, I. (2003). Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids. Computer Methods in Applied Mechanics and Engineering. 192(28-30), 3109-3161.
    doi badge online source badge
  • Babuska, I., & Strouboulis, T. (2002). Can we trust the computational analysis of engineering problems?. Lecture Notes in Computational Science and Engineering. 19, 169-183.
    doi badge online source badge
  • Babuska, I., Strouboulis, T., Datta, D., & Gangaraj, S. (2000). What do we want and what do we have in a posteriori estimates in the FEM. 163-180.
    doi badge online source badge
  • Strouboulis, T., Babuska, I., Gangaraj, S. K., Copps, K., & Datta, D. K. (1999). A posteriori estimation of the error in the error estimate. Computer Methods in Applied Mechanics and Engineering. 176(1-4), 387-418.
    doi badge online source badge
  • Babuska, I., Strouboulis, T., & Gangaraj, S. K. (1999). Guaranteed computable bounds for the exact error in the finite element solution Part I: One-dimensional model problem. Computer Methods in Applied Mechanics and Engineering. 176(1-4), 51-79.
    doi badge online source badge
First Name
Theofanis
Last Name
Strouboulis
mailing address
Texas A&M University; Aerospace Engineering; 3141 TAMU
College Station, TX 77843-3141
USA