Straube, Emil individual record
Professor
overview

My research focuses on several complex variables, Bergman kernel, and boundary regularity theory for Cauchy-Riemann equations.

education and training
selected publications
Academic Articles47
  • Celik, M., Sahutoglu, S., & Straube, E. J. (2020). CONVEX DOMAINS, HANKEL OPERATORS, AND MAXIMAL ESTIMATES. Proceedings of the American Mathematical Society. 148(2), 751-764.
    doi badge online source badge
  • Celik, M., Sahutoglu, S., & Straube, E. J. (2020). COMPACTNESS OF HANKEL OPERATORS WITH CONTINUOUS SYMBOLS ON CONVEX DOMAINS. HOUSTON JOURNAL OF MATHEMATICS. 46(4), 1005-1016.
  • Biard, S., & Straube, E. J. (2019). ESTIMATES FOR THE COMPLEX GREEN OPERATOR: SYMMETRY, PERCOLATION, AND INTERPOLATION. Transactions of the American Mathematical Society. 371(3), 2003-2020.
    doi badge online source badge
  • Biard, S., & Straube, E. J. (2017). L-2-Sobolev theory for the complex Green operator. International Journal of Mathematics. 28(9), 1740006-1740006.
    doi badge online source badge
  • Straube, E. J., & Zeytuncu, Y. E. (2015). Sobolev estimates for the complex Green operator on CR submanifolds of hypersurface type. Inventiones Mathematicae. 201(3), 1073-1095.
    doi badge online source badge
Books1
  • Straube, E. J. (2010). Lectures on the L2-Sobolev Theory of the [d-bar]-Neumann Problem. European Mathematical Society.
Chapters7
  • Straube, E. J. (2010). Compactness. LECTURES ON THE L2-SOBOLEV THEORY OF THE DELTA-NEUMANN PROBLEM. 74-125.
  • Straube, E. J. (2010). Introduction. LECTURES ON THE L2-SOBOLEV THEORY OF THE DELTA-NEUMANN PROBLEM. 1-+.
  • Straube, E. J. (2010). Regularity in Sobolev spaces. LECTURES ON THE L2-SOBOLEV THEORY OF THE DELTA-NEUMANN PROBLEM. 126-183.
  • Straube, E. J. (2010). Strictly pseudoconvex domains. LECTURES ON THE L2-SOBOLEV THEORY OF THE DELTA-NEUMANN PROBLEM. 51-73.
  • Straube, E. J. (2010). The L-2-theory. LECTURES ON THE L2-SOBOLEV THEORY OF THE DELTA-NEUMANN PROBLEM. 9-50.
Conference Papers2
  • Ayyr, M., & Straube, E. J. (2015). Compactness of the -Neumann Operator on the Intersection of Two Domains. Analysis and Geometry. 9-15.
    open access badge online source badge
  • Straube, E. J. (2006). Aspects of the L2-Sobolev theory of the -Neumann problem. 2, 1453-1478.
Repository Documents / Preprints28
  • doi badge
  • Celik, M., Sahutoglu, S., & Straube, E. J. (2020). A Sufficient condition for compactness of Hankel operators.
    doi badge
  • Celik, M., Sahutoglu, S., & Straube, E. J. (2020). Compactness of Hankel operators with continuous symbols on convex domains.
    doi badge
  • Celik, M., Sahutoglu, S., & Straube, E. J. (2019). Convex domains, Hankel operators, and maximal estimates.
    doi badge
  • doi badge
editor of
Books1
researcher on
chaired theses and dissertations
First Name
Emil
Last Name
Straube
mailing address
Texas A&M University; Mathematics; 3368 TAMU
College Station, TX 77843-3368
USA