Mallick, Bani individual record
Distinguished Professor

Bayesian hierarchical Modeling, Nonparametric Regression and classification, Bioinformatics, Spatio-temporal Modeling, Machine learning, Functional Data analysis, Bayesian nonparametrics, Petroleum reservoir characterization, Uncertainty analysis of Computer Model outputs

education and training
selected publications
Academic Articles111
  • Biegler, L., Biros, G., Ghattas, O., Heinkenschloss, M., Keyes, D., Mallick, B., ... Willcox, K. (2010). Large-Scale Inverse Problems and Quantification of Uncertainty. Wiley.
    doi badge
  • Mallick, B. K., Gold, D. L., & Baladandayuthapani, V. (2009). Bayesian Analysis of Gene Expression Data. John Wiley & Sons, Ltd.
    doi badge
  • Baladandayuthapani, V., Ray, S., & Mallick, B. K. (2005). Bayesian Methods for DNA Microarray Data Analysis. Elsevier.
    doi badge
  • Baladandayuthapan, V., Wang, X., Mallick, B. K., & Do, K. (2015). Bayesian Functional Mixed Models for Survival Responses with Application to Prostate Cancer. Chen, Z., Liu, A., Qu, Y., Tang, L., Ting, N., & Tsong, Y. (Eds.), Applied Statistics in Biomedicine and Clinical Trials Design. (pp. 35-59). Springer International Publishing.
    doi badge
  • Richardson, S., Bottolo, L., & Rosenthal, J. S. (2011). Bayesian Models for Sparse Regression Analysis of High Dimensional Data*. Bayesian Statistics 9. (pp. 539-568). Oxford University Press.
    doi badge
  • Maity, A., & Mallick, B. K. (2010). In-Vitro to In-Vivo Factor Profiling in Expression Genomics Machines. Bayesian Modeling in Bioinformatics. (pp. 317-342). Chapman and Hall/CRC.
    doi badge
  • Mallick, B., Ghosh, D., & Ghosh, M. (2008). Machine Learning in Structural Biology: Interpreting 3D Protein Images. Introduction to Machine Learning and Bioinformatics. (pp. 255-294). Chapman and Hall/CRC.
    doi badge
  • Vannucci, M., Baladandayuthapani, V., Holmes, C. C., Mallick, B. K., & Carroll, R. J. (2006). Modeling Nonlinear Gene Interactions Using Bayesian MARS. Do, K., Vannucci, M., & Müller, P. (Eds.), Bayesian Inference for Gene Expression and Proteomics. (pp. 116-136). Cambridge University Press.
    doi badge
Conference Papers2
  • Drake, R. P., Doss, F. W., Fryxell, B., Grosskopf, M. J., Holloway, J. P., van der Holst, B., ... Bingham, D. (2009). Using High Power Lasers to Create Radiative Shock Waves. 1, 1-2.
    doi badge
  • Mallick, B. K., Denison, D., & Gangopadhyay, A. K. (2002). A Bayesian curve fitting approach to power spectrum estimation. JOURNAL OF NONPARAMETRIC STATISTICS. 14(1-2), 141-153.
    doi badge
editor of
recent teaching activities
chaired theses and dissertations
First Name
Last Name
mailing address
Texas A&M University; Department Of Statistics; 3143 TAMU
College Station, TX 77843-3143