- Research Assistant Professor, Institute of Biosciences and Technology, School of Medicine
I obtained my Ph.D. with a major in Bioinorganic Chemistry, focusing on metallodrugs against cancer and Alzheimer's disease (AD). After then, I worked at the Institute of Biosciences & Technology (IBT), Texas A&M University (TMAU) as a postdoc and research scientist dissecting and regulating Calcium Signaling by biochemistry, cell biology, and synthetic biology strategies. I accumulated strong research expertise on Ca2+ signaling in the immune system from mechanistic dissection of SOCE channels to tailoring cell functions using optical and chemical tools. I was promoted as a Research Assistant Professor in Oct 2020 to pursue my independent research program with interests in (i) Design and screening of Ca2+ channel modulators (compounds & peptide/protein drugs) to treat channelopathy or improve T cell immunotherapy; (ii) Delineate novel regulatory mechanisms of Ca2+ signaling in health and disease; (iii) Devise optogenetic, chemical and synthetic biology tools for translational research and biomedical applications. I have been engaged in the interface between chemistry and biology for almost 15 years, with specific training and expertise in Ca2+ imaging, protein engineering, protein chemistry, cell biology, and immunotherapy. So far, I have published 20+ publications as a lead author or corresponding author in well-respected journals, including Nature Communications, JACS, Angew Chem, Advanced Science, Chemical Science, eLife, and PLOS Biology with citations > 2000 times.
My current research interests:
1. Design and screening of CRAC Ca2+ channel modulators including small molecules, peptide/protein drugs, and antibody/nanobody to treat Channelopathy or improve T cell-based immunotherapy.
2. Delineate the regulatory network of the CRAC channel in healthy and diseased states
3. Devising optogenetic, chemical, and synthetic biology tools for precise control of cellular physiology