DC normal glow discharges in atmospheric pressure atomic and molecular gases | Academic Article individual record

DC glow discharges were experimentally investigated in atmospheric pressure helium, argon, hydrogen, nitrogen and air. The discharges were characterized by visualization of the discharges and voltage and current measurements for current of up to several milliamperes. Significant differences are seen in the gas temperature; however all the discharges appear to operate as temperature and pressure scaled versions of low pressure discharges. In the normal glow discharges, features such as negative glow, Faraday dark space and positive column regions are clearly observable. In hydrogen and to a lesser degree in helium and argon standing striations of the positive column were visible in the normal glow regime. Normal glow characteristics such as normal current density at the cathode and constant electric field in the positive column are observed although there are some unexplained effects. The emission spectra for each of the discharges were studied. Also the rotational and vibrational temperature of the discharges were measured by adding trace amounts of N 2 to the discharge gas and comparing modeled optical emission spectra of the N 2 2nd positive system with spectroscopic measurements from the discharge. The gas temperatures for a 3.5 mA normal glow discharge were around 420 K, 680 K, 750 K, 890 K and 1320 K in helium, argon, hydrogen, nitrogen and air, respectively. Measured vibrational and excitation temperatures indicate non-thermal discharge operation. Mixtures of gases achieved intermediate temperatures. © 2008 IOP Publishing Ltd.

author list (cited authors)
Staack, D., Farouk, B., Gutsol, A., & Fridman, A.
publication date
IOP Publishing Publisher
citation count