Risk of polycyclic aromatic hydrocarbon (PAH) exposure from ingested food: The Azerbaijan case study | Academic Article individual record

Risks due to polycyclic aromatic hydrocarbons (PAHs) exposure from food consumption for the population of Azerbaijan were determined using deterministic and probabilistic methods. The guidelines and methods described and presented in the United States Environmental Protection Agency (U.S. EPA) Risk Assessment Guidance for Superfund (RAGS) Part A was used in performing the risk assessments. The current study utilized concentration data from different sources representing international studies performed over the past decade to determine those food products that contribute the most exposure to PAHs through ingestion for the Azeri population. Due to lack of concentration data from middle-Eastern countries, only European countries were considered and used for this analysis. Using the benzo[a]pyrene (BaP) toxicity equivalency factors (TEFs) to adjust the concentrations of the individual PAH compounds to BaP equivalent concentrations, risk analyses were performed. Deterministic risk estimates fell within probabilistic risk estimates. Child risks were consistently four to seven times higher in magnitude than adult risks. Risk potentials determined for the food exposure pathway were also determined to be up to ten times higher in magnitude than risks determined from exposures due to other pathways such as soil contamination. It was observed that three major factors contributed to the variability in the assessment results, which were child and adult body weights, consumption rates of the different food groups, and the variances of the input data. The most prevalent pathways of PAH exposure from the dietary patterns of the Azerbaijani population were determined to be from bread and bakery products, milk and dairy products, and egg products.

author list (cited authors)
Nwaneshiudu, O. C., Autenrieth, R. L., McDonald, T. J., Donnelly, K. C., Degollado, E. D., & Abusalih, A. A.
publication date
  • Ingestion
  • PAHs
  • Risk
  • Human Health
  • Carcinogens
citation count