Institute of Mathematics, Polish Academy of Sciences
|
Publisher
individual record
publisher of
Academic Articles34
- Young, M. P. (2022). An improved spectral large sieve inequality for SL3(Z). Acta Arithmetica. 204(2), 151-164.
- Baudier, F., Lancien, G., Motakis, P., & Schlumprecht, T. (2021). Coarse and Lipschitz universality. Fundamenta Mathematicae. 254(2), 181-214.
- Anshelevich, M., & Wang, Z. (2020). Higher variations for free Levy processes. Studia Mathematica. 252(1), 49-81.
- Lamel, B., & Mir, N. (2019). Formal versus analytic CR mappings. Annales Polonici Mathematici. 123(1), 387-422.
- Mendelson, S., Milman, E., & Paouris, G. (2019). Generalized dual Sudakov minoration via dimension-reduction-a program. Studia Mathematica. 244(2), 159-202.
- Erdelyi, T. (2016). Coppersmith-Rivlin type inequalities and the order of vanishing of polynomials at 1. Acta Arithmetica. 172(3), 271-284.
- Erdelyi, T. (2016). The number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set. Acta Arithmetica. 176(2), 177-200.
- Figiel, T., & Johnson, W. B. (2015). The dual form of the approximation property for a Banach space and a subspace. Studia Mathematica. 231(3), 287-292.
- Dykema, K., & Skripka, A. (2015). Hlder's inequality for roots of symmetric operator spaces. Studia Mathematica. 228(1), 47-54.
- Chen, D., Johnson, W. B., & Zheng, B. (2014). Commutators on (Sigma l(q))(p) (vol 206, pg 175, 2011). Studia Mathematica. 223(2), 187-191.
- Dabrowski, Y., Dykema, K. J., & Mukherjee, K. (2014). The simplex of tracial quantum symmetric states. Studia Mathematica. 225(3), 203-218.
- Borwein, P., Erdelyi, T., & Kos, G. (2013). The multiplicity of the zero at 1 of polynomials with constrained coefficients. Acta Arithmetica. 159(4), 387-395.
- Dajani, K., Hensley, D., Kraaikamp, C., & Masarotto, V. (2012). Arithmetic and ergodic properties of `flipped' continued fraction algorithms. Acta Arithmetica. 153(1), 51-79.
- Erdelyi, T. (2012). Upper bounds for the L-q norm of Fekete polynomials on subarcs. Acta Arithmetica. 153(1), 81-91.
- Bui, H. M., Conrey, B., & Young, M. P. (2011). More than 41% of the zeros of the zeta function are on the critical line. Acta Arithmetica. 150(1), 35-64.
- Erdelyi, T. (2011). Orthogonality and the maximum of Littlewood cosine polynomials. Acta Arithmetica. 146(3), 215-231.
- Foucart, S., & Lai, M. (2010). Sparse recovery with pre-Gaussian random matrices. Studia Mathematica. 200(1), 91-102.
- Baudier, F., Kalton, N. J., & Lancien, G. (2010). A new metric invariant for Banach spaces. Studia Mathematica. 199(1), 73-94.
- Freeman, D., Odell, E., Schlumprecht, T. h., & Zsk, A. (2009). Banach spaces of bounded Szlenk index II. Fundamenta Mathematicae. 205(2), 161-177.
- Young, M. P. (2009). The first moment of quadratic Dirichlet L-functions. Acta Arithmetica. 138(1), 73-99.
- Odell, E., Schlumprecht, T. h., & Zsk, A. (2007). Banach spaces of bounded Szlenk index. Studia Mathematica. 183(1), 63-97.
- Borwein, P., & Erdelyi, T. (2007). Lower bounds for the number of zeros of cosine polynomials in the period: a problem of Littlewood. Acta Arithmetica. 128(4), 377-384.