Enhanced nucleate boiling on copper micro-porous surfaces | Academic Article individual record
abstract

Saturation boiling of PF-5060 dielectric liquid on Cu micro-porous surface layers (95, 139, 171, 197 and 220-μm thick) is investigated. These layers are deposited on 10×10mm Cu substrates using two-stage electrochemical process. The basic micro-structure, obtained in the first stage using current density of 3A/cm2 for 15-44s, depending on thickness, is strengthened by continuing electrochemical deposition using much lower current density for 10's of minutes. For conditioned surface layers, after a few successive boiling tests, the pool boiling curves are reproducible and the temperature excursion prior to boiling incipience is either eliminated or reduced <7K. Present nucleate boiling results are markedly better than those reported for dielectric liquids on micro- and macro-structured surfaces. Present values of CHF (22.7-27.8W/cm2) and hMNB (2.05-13.5W/cm2K) are ∼40-70% higher than and >17 times those reported on plane surfaces (<16W/cm2 and ∼0.8W/cm2K). Best results are those of the 171-μm thick layer: CHF of 27.8W/cm2 occurs at ΔTsat of only 2.1K and hMNB of 13.5W/cm2K occurs at ΔTsat=2.0K. © 2010 Elsevier Ltd.

author list (cited authors)
El-Genk, M. S., & Ali, A. F.
publication date
2010
publisher
Elsevier bv Publisher
citation count

95