Directional dependence of the threshold displacement energies in metal oxides | Academic Article individual record
abstract

© 2017 IOP Publishing Ltd. Molecular dynamics (MD) simulations are performed to investigate the directional dependence and the values of the threshold energies (TDEs) for the displacements of the oxygen and metal atoms and for producing stable Frenkel pairs in five metal oxides of Cr2O3, Al2O3, TiO2, SiO2, and MgO. The TDEs for the Frenkel pairs and atoms displacement are calculated in 66 crystallographic directions, on both the anion and cation sublattices. The performed simulations are for metal and oxygen PKA energies up to 350 and 400 eV, respectively. The calculated probability distributions for the atoms displacement and average number of Frenkel pairs produced in the different oxides are compared. The results revealed unique symmetrical patterns of the TDEs for the displacement of the atoms and the formation of stable Frenkel pairs, confirming the strong dependence on the direction and the crystalline structure of the oxides. Results also showed that the formation of stable Frenkel pairs is associated with the displacements of the PKAs and/or of the SKAs. The probabilities of the TDEs for the displacement of the oxygen and metal PKAs are consistently lower than those of the atoms in the crystal. In SiO2, TDEs for the displacement of oxygen and metal atoms and those for the formation of stable Frenkel pairs are the lowest, while those in TiO2 are among the highest. The results for Cr2O3 and Al2O3, which have the same crystal structure, are similar. The calculated TDEs for MgO, Al2O3 and TiO2 are generally in good agreement with the experimental values and the probability distributions of the TDEs for the PKAs in TiO2 are in good agreement with reported MD simulation results.

author list (cited authors)
Cowen, B. J., & El-Genk, M. S.
publication date
2017
publisher
IOP Publishing Publisher
citation count

3