Globins, such as hemoglobin (Hb) and myoglobin (Mb), have gained attention for their ability to reduce nitrite (NO2(-)) to nitric oxide (NO). The molecular interactions that regulate this chemistry are not fully elucidated, therefore we address this issue by investigating one part of the active site that may control this reaction. Here, the effects of the 2,4-heme substituents on the nitrite reductase (NiR) reaction, and on the structures and energies of the ferrous nitrite intermediates, are investigated using Mb as a model system. This is accomplished by studying Mbs with hemes that have different 2,4-R groups, namely diacetyldeuteroMb (-acetyl), protoMb (wild-type (wt) Mb, -vinyl), deuteroMb (-H), and mesoMb (-ethyl). While trends on the natural charge on Fe and O-atom of bound nitrite are observed among the series of Mbs, the Fe(II)-NPyr (Pyr=pyrrole) and Fe(II)-NHis93 (His=histidine) bond lengths do not significantly change. Kinetic analysis shows increasing NiR activity as follows: diacetyldeuteroMb
J Inorg Biochem
- Protein Binding
- Nitrite Reductases
- Heme
- Nitric Oxide
- Oxidation-Reduction
- Myoglobin
- Nitrites
- Kinetics
- Reduction
- Models, Chemical
- Horses
- Density Functional Theory
- Animals
- Nitrite
- Quantum Theory
- Models, Molecular
6