Følner tilings for actions of amenable groups | Academic Article individual record

© 2018, Springer-Verlag GmbH Germany, part of Springer Nature. We show that every probability-measure-preserving action of a countable amenable group G can be tiled, modulo a null set, using finitely many finite subsets of G (“shapes”) with prescribed approximate invariance so that the collection of tiling centers for each shape is Borel. This is a dynamical version of the Downarowicz–Huczek–Zhang tiling theorem for countable amenable groups and strengthens the Ornstein–Weiss Rokhlin lemma. As an application we prove that, for every countably infinite amenable group G, the crossed product of a generic free minimal action of G on the Cantor set is Z-stable.

author list (cited authors)
Conley, C. T., Jackson, S. C., Kerr, D., Marks, A. S., Seward, B., & Tucker-Drob, R. D.
publication date
published in
citation count