| Academic Article individual record

Rhodococcus equi can cause severe infections in people, particularly in immunocompromised individuals. The R. equi virulence plasmids (vap) encoding vapA and vapB are linked to development of infections in domestic animals. Recently, a novel virulence plasmid, vapN, was identified in isolates cultured from cattle, but its prevalence or significance in human R. equi infections has not been extensively studied. To determine the prevalence of vapN in a diverse collection of human-derived isolates from different countries, 65 R. equi isolates collected by various institutions from 1984 to 2002 were screened for the presence of vapN and other virulence plasmids through polymerase chain reaction (PCR) using redesigned primer sets. Of the isolates that carried plasmids, 43% (16/37) were vapN-positive and fewer were vapB or vapA-positive (30 and 16%, respectively). This is the first report of vapN carriage in R. equi isolated from human infections. One isolate (H-30) carried vapN but did not amplify the conjugal plasmid transfer gene traA associated with carriage of vap, which could be explained by sequence variation within the traA gene. Another isolate (H-55) amplified traA, but did not amplify vapA, B, or N (traA+ vapABN-) with previously described primer sets or those developed for this study. The H-55 traA sequence had 98% identity to traA sequences in vapA plasmids, which suggests that it may carry a variant of previously characterized virulence plasmids or a novel virulence plasmid. Carriage of vapN in R. equi isolates derived from people is not uncommon and more research is needed to determine its significance in the epidemiology and pathogenesis of human R. equi infections.

author list (cited authors)
Bryan, L. K., Alexander, E. R., Lawhon, S. D., & Cohen, N. D.
publication date
published in
PLoS ONE Journal
  • Actinomycetales InfectionsBacterial ProteinsBase SequenceDNA PrimersDNA, BacterialDNA-Binding ProteinsGenes, BacterialGenetic VariationHumansMembrane GlycoproteinsOpportunistic InfectionsPlasmidsPolymerase Chain ReactionRhodococcus EquiVirulence