A body sensor network with electromyogram and inertial sensors: multimodal interpretation of muscular activities. | Academic Article individual record
abstract

The evaluation of the postural control system (PCS) has applications in rehabilitation, sports medicine, gait analysis, fall detection, and diagnosis of many diseases associated with a reduction in balance ability. Standing involves significant muscle use to maintain balance, making standing balance a good indicator of the health of the PCS. Inertial sensor systems have been used to quantify standing balance by assessing displacement of the center of mass, resulting in several standardized measures. Electromyogram (EMG) sensors directly measure the muscle control signals. Despite strong evidence of the potential of muscle activity for balance evaluation, less study has been done on extracting unique features from EMG data that express balance abnormalities. In this paper, we present machine learning and statistical techniques to extract parameters from EMG sensors placed on the tibialis anterior and gastrocnemius muscles, which show a strong correlation to the standard parameters extracted from accelerometer data. This novel interpretation of the neuromuscular system provides a unique method of assessing human balance based on EMG signals. In order to verify the effectiveness of the introduced features in measuring postural sway, we conduct several classification tests that operate on the EMG features and predict significance of different balance measures.

author list (cited authors)
Ghasemzadeh, H., Jafari, R., & Prabhakaran, B.
publication date
2010
keywords
  • Neural Networks (Computer)
  • Postural Balance
  • Signal Processing, Computer-Assisted
  • Electromyography
  • Humans
  • Male
  • Data Interpretation, Statistical
  • Adult
  • Leg
  • Algorithms
  • Acceleration
  • Monitoring, Physiologic
  • Reproducibility Of Results
  • Neural Networks, Computer
  • Muscle, Skeletal
altmetric score

3.0

citation count

75